How does animacy affect word order in a VOS language?

Takuya Kubo1, Hajime Ono2, Mikihiro Tanaka3, Masatoshi Koizumi4, Hitomi Sakai1

1Hirosima University, 2Kinki University, 3Showa University, 4Tohoku University

Corresponding author: takuyak0625@hotmail.com

Abstract

Although language production mechanism is often assumed to be universal, the range of languages investigated so far is quite limited. We conducted a picture description task to clarify how conceptual accessibility affects word order selection and how incremental language production is in Kaqchikel which is Object-Subject order language spoken in Guatemala. Although Kaqchikel speakers tend to produce passive sentence with animate patient, a tendency to mention animate entity before inanimate entity was not observed. These results support a weakly incremental view on language production.

Introduction

1. Direct hypothesis

• Conceptual accessibility correlates only with the serial order among constituents (1).
• More accessible entity tends to be assigned an earlier position in a sentence.

2. Indirect hypothesis

• Conceptual accessibility correlates with grammatical function (1).
• More accessible entity tends to be assigned a higher grammatical function along with Noun Phrase Accessibility Hierarchy (NPAH: SU > DO > IO > ...).
• More passive structures are produced with animate patient.

Conceptual accessibility drive speakers to choose a syntactic structure in which accessible concept can serve as syntactic subject (4).

Research Questions

Does OS language have a tendency to mention more accessible entity before less accessible entity?
• Does Animate entity tend to follow inanimate entity in language production?

What is the relation between conceptual accessibility and the word order in OS languages?
• Pullum (1977) proposed principles for linearization in word’s languages [5].
• Fundamental principle: NPs are linearized along with NPAH. Additional principle: Subject NP is assigned the final position in VOS languages.

Kaqchikel (OS language)

1. Advantage of Kaqchikel

• Word order alternation is independent of voice alternation.
• Head-marking and ergative language
• Grammatical function and number of NPs agree with prefixes of verb.

2. Constituent order

3. Voice system

• passive, anti-passive
• active and passive voice is relevant in our experiment.

• Examples
 a. X-qa-tuch ch’öya ri ak’wal ri xam (VOS)
 COM-erg.3s-abs.3s-slept the girl the boy
 b. ri xam x-a-qa-tuch ch’öya ri ak’wal (VOS)
 the girl COM-erg.3s-abs.3s-slept the boy the girl
 c. ri ak’wal x-a-qa-tuch ch’öya ri xam (VOS)
 ri ak’wal COM-erg.3s-abs.3s-slept the girl the boy

Discussion

1. Significant tendency to assign human patient to subject function.
• More passive use with human patient than object patient.
• We did not find crucial tendency to mention animate entity earlier than inanimate entity in Kaqchikel.
• Although SVO order is most frequently in active sentence, VOS order is more often when patient is object.
• This result does not support direct effect of conceptual accessibility.
• This tendency follows Pullum’s assumption of linearization.

2. Difference among SO language and OS language.
• Recent work on Japanese (SO language) suggests indirect effect also influences the serial word order in a way such that animate entity tends to be assigned not only subject function but also earlier position (ITI).
• Kaqchikel speaker has a tendency to assign more accessible entity with higher grammatical function, but not in the earlier position of the sentence.

What distinguish Kaqchikel from SO languages?

• Since Kaqchikel is different from SO language, basic word order of OS language may not be compatible with NPAH directly.
• NPAH show directly impact on grammatical function assignment but only indirectly influence linear order assignment.
• Our results support weakly incremental view of sentence production.

Acknowledgement:
The authors thank Yoshiho Yasugi, Lolmay P. Garcia, Feliberto P. Majpal, Juan E. A. Sian for their support for conducting experiments in Guatemala, and other project members for valuable comments. This research was supported by Grant-in-Aid for Scientific Research (S) 22222201 (PI: Masatoshi Koizumi).

References:

Method

Participants: 60 native Kaqchikel speakers.
Task: Participants verbally describe the target pictures in a simple sentence.
Design: 1*3 (patient animacy: Human, Animal (and Object)).
Materials: 24 target pictures manipulating patient animacy.

Procedure: Experiment was conducted by a native Kaqchikel speaker in a quiet room in Antigua, Guatemala.
Analysis: Mixed effect logistic regression.

Result

<table>
<thead>
<tr>
<th></th>
<th>Human-Human</th>
<th>Human-Animal</th>
<th>Human-Object</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOS</td>
<td>26 (10.5%)</td>
<td>47 (17.5%)</td>
<td>100 (37.9%)</td>
<td>173 (22.2%)</td>
</tr>
<tr>
<td>VSO</td>
<td>3 (1.2%)</td>
<td>5 (1.9%)</td>
<td>1 (0.4%)</td>
<td>9 (1.2%)</td>
</tr>
<tr>
<td>Passive</td>
<td>11 (4.4%)</td>
<td>6 (2.2%)</td>
<td>2 (0.6%)</td>
<td>19 (2.4%)</td>
</tr>
<tr>
<td>Anti-passive</td>
<td>22 (8.3%)</td>
<td>3 (1.1%)</td>
<td>1 (0.4%)</td>
<td>26 (3.3%)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (4.4%)</td>
<td>5 (1.9%)</td>
<td>4 (1.5%)</td>
<td>20 (2.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>248 (100%)</td>
<td>268 (100%)</td>
<td>264 (100%)</td>
<td>780 (100%)</td>
</tr>
</tbody>
</table>

Voice
- More passive structure with human patient than object patient (p<.05).

Constituent Order
- More SVO order than VOS order (68.3% vs. 22.2%).
- More VOS order with inanimate object than other two conditions (p<.001).

Discussion

VOS/SVO

References: